# Anatomy of the Nervous System

Chapter 2

#### Content

- 2.1 Central nervous system (CNS)
- 2.2 Peripheral nervous system (PNS)
- 2.3 Support structures of the nervous system

#### Division of the nervous system

- 2 main categories:
  - Central nervous system (CNS; includes brain & spinal cord)
  - Peripheral nervous system (PNS; nerves)

**Figure 2.1** Anatomical structures of the CNS and the PNS.



## Naming Signals

- Origin and direction of signal determine the labelling of the signal
  - Afferent (incoming; ascending; coming to the CNS)
  - Efferent (outgoing; descending; moving out of the CNS)

Figure 2.2 Afferent versus efferent signals.



## Central nervous system (CNS)

- As aforementioned, brain & spinal cord
- Brain
  - Size: 160 mm (16 cm; ~6 inches) in length
     x 90 mm (9 cm; ~3.5 inches) in height
  - Volume: 1400 cm<sup>3</sup>; would fill about 1/3 of a gallon (barely 2% of body weight)
  - Small size
  - Uses 1/5 of body's energy expenditure (20% of body's energy)

## Anatomical Language of the Brain: front vs back

- Consider person facing sideways & desire to discuss "front of the head" and "back of the head"
  - More forward = rostral (beak) OR anterior (before)
  - More towards back part of brain= caudal (tail) OR posterior(after)



## Anatomical Language of the Brain: top vs bottom

- Consider desire to discuss "top of the head" and "bottom of the head"
  - More towards top of head = dorsal (back) OR superior (above)
  - More towards back part of brain eventral (belly) OR inferior (below)



## Anatomical Language of the Brain: towards vs away from center

- Consider person facing you & desire to discuss "closer to the center of the brain" and "closer to the sides of the brain"
  - Oloser to center = medial
  - Oloser to sides of brain = lateral



#### **Dissection Orientation**

- Consider person looking to left & brain divided into sections cut (or brain images taken) along vertical lines
- Coronal (from corona; Latin for crown)
- AKA frontal



#### **Dissection Orientation**

- Consider person looking to left & brain divided into sections cut (or images are taken) along dorsal-ventral
- Horizontal (or axial, especially in humans; AKA transverse)



#### **Dissection Orientation**

- Consider person looking at you
   & brain divided into sections
   cut (or images are taken) from
   left to right (parallel to midline)
- Parasagittal
  - Never symmetrical
  - Sagittal (comes from Latin word for *arrow*)



## Let's look at these dissection orientations in another way

Anatomical Planes

#### Sliced Sections of Brain

- White matter (myelinated)
  - Fatty lipid causes reflection of light – making it appear white
- Gray matter
  - Darker pink or gray in color
  - Dense with cell bodies
- Two similar halves
  - Left and right hemispheres
  - White matter tract allowing for communication between the two = corpus callosum



**Figure 2.5** Coronal brain section showing examples of white matter, gray matter, and the **corpus callosum**, the major communication tract between the left and right hemispheres.

- 3 main germ layers of embryo:
  - o Ectoderm
    - Fold into itself and merges at surface, creating the neural tube (3-4 weeks of gestation)
  - Mesoderm
  - o Endoderm

2-Minute Neuroscience Video: Early Neural Development

#### Neural tube

- Moves from "three-vesicle stage" to, one-week later, "five-vesicle stage"
- Names of vesicles can describe the stages of development
   OR the grouping of structures that form in adulthood

- Vesicles from posterior to anterior
  - 1 Rhombencephalon (hindbrain)
  - 1 a) Myelencephalon
  - 1 b) Metencephalon
  - 2 Mesencephalon (midbrain)
  - 3 Prosencephalon (forebrain)
  - 3 a) Diencephalon
  - 3b) Telencephalon

**Figure 2.6** The future structures of the developing nervous system.



#### 1. Rhombencephalon (hindbrain)

- Evolutionarily, oldest part of CNS
- Structures likely evolved ~570 million years ago
- Moving into the five-vesicle stage, it subdivides:

#### a. Myelencephalon

- Develops into the medulla oblongata
  - Responsible for unconscious functions such as breathing and changes in heart rate and blood pressure
  - Can detect toxins in blood from diet and trigger vomiting



https://commons.wikimedia.org/wiki/File:Midline\_sa gittal\_view\_of\_the\_brainstem\_and\_cerebellum.png

#### b. Metencephalon

- Develops into the pons and cerebellum
  - Pons
    - Also helps perform involuntary functions like breathing
    - Contains areas that help us hear sounds and taste foods
  - Cerebellum
    - "little brain"
    - Best known for motor control functions (balance, coordination, posture, and learning physical actions)



https://commons.wikimedia.org/wiki/File:Midline\_sa gittal\_view\_of\_the\_brainstem\_and\_cerebellum.png

- 2. Mesencephalon (midbrain)
- Little change from three- to fivevesicle stage
- Many structures with a wide variety of functions
  - Ex. Periaqueductal gray respond to painful stimuli
  - Ex. Red nucleus and substantia nigra coordinate complex movements
  - Ex. Tectum respond to incoming visual stimuli
  - Ex. Ventral tegmental area processing of reward and motivation



## Midbrain Image



https://commons.wikimedia.org/wiki/File:Cn3nucleus-en.svg

- 3. Prosencephalon (forebrain)
- Develops into "higher order" brain regions including cerebral cortex
- Largely what you see when you look at brain from side or top
- Subdivided in five-vesicle stage
  - a) Diencephalon
    - Contains thalamus ("relay station") and hypothalamus (serves as communication route to endocrine system)
  - b) Telencephalon
    - Contains basal ganglia (structures used for motor and habit learning, emotional processing, & action selection) & cerebral cortex (outermost layer of brain; processes behaviors such as attention, memory, & language)
      - Cortex ("bark")

- Consider organization in phylogenetic "timeline"
  - Posterior to anterior
    - Hindbrain (brain stem) basic survival (respiration & locomotion)
    - Midbrain motivation & coordinated movements
    - Forebrain higher order functions such as personality, intentional inhibition of actions, and planning long-term actions
- All structures work together simultaneously to produce range of animal activities

#### Major lobes of the cortex

- Cortex (bumpy outer surface)
  - Raised ridges (singular: gyrus; plural: gyri)
  - Grooved indentations (singular: sulcus; plural: sulci; sometimes called fissure)
  - Named by function or location

### Key Sulci / Fissures

- 3 sulci to learn now:
  - Longitudinal fissure (divides hemispheres; runs along anterior-posterior axis)



https://commons.wikimedia.org/wiki/File:Brain\_autopsy\_top\_view.jpg

#### Key Sulci / Fissures

- Central sulcus (starts at dorsal part of brain about halfway on anterior-posterior axis; runs ventrally)
- Lateral fissure (along the anterior and posterior direction; curves gently dorsally; middle third of the brain in a sagittal view)



#### Major lobes of the cortex

- 1. Occipital lobe
- 2. Temporal lobe
- 3. Parietal lobe
- 4. Frontal lobe



**Figure 2.7** Lobes of the telencephalon and two of the major sulci from a lateral view (top) and a midsagittal view (bottom). The insular cortex is not visible from the outside.

#### Occipital lobe

- Posterior-most section of brain
- No obvious border anatomically
- Smallest lobe
- Main function: processing visual stimuli
- Primary visual cortex (V1) interprets light signals into a representation of visual world
- Other vision-related stimuli are also processed in occipital lobe (motion, orientation, and colour)

#### Temporal lobe

- Ventral-most lobe
- Lateral fissure marks dorsal border
- Anterior to occipital lobe
- Immediately behind the temple
- Name comes from Latin word meaning time (often, gray hairs first appear at temples)
- Primary auditory cortex (A1) allows interpretation of sound waves
- Hippocampus is buried medially and ventrally in temporal lobe; allows memory-related processes
- Temporal lobe also houses structures important for language (comprehension & production)

#### Parietal lobe

- In dorsal aspect
- Immediately anterior to occipital lobe and superior to temporal lobe
- One of major functions: sensation of different tactile properties of word around us (touch, temperature, pain, vibration, and other modalities)
- Also responsible for proprioception (ability to identify where parts of body are located)
- Primary somatosensory cortex (S1) (soma = body)

#### Frontal lobe

- Anterior-most part of brain
- Posterior border is lateral sulcus
- Largest of four lobes for mammals
- Contains primary motor cortex (M1) directly anterior to central sulcus; controls movement of body
- "Higher order" functions (ex. Personality)
  - Mental math
  - Hold string of letters in mind and repeat backward
  - Suppress unacceptable actions (inhibition)

### Clinical connection: Phineas Gage



Figure 2.8 Phineas Gage with the tamping rod (left) and a drawing of the injury (right).

#### Compare / Contrast

#### Coronal slice of brain



#### **Cross-section of spinal cord**



#### Spinal cord

- Posterior from brainstem
- Carries information upward to brain & downwards to body's organs and muscles
- Can process sensations and form appropriate motor response without brain input
- Originates at about level of neck and runs to small of back (~44 cm; 17.5 inches)
- Diameter is not uniform (~6.5 mm, or 0.25 inches, to ~13 mm, or 0.5 inches)
- Housed within vertebral column
- Cord is continuous, but overlying vertebrae are divided by sections and numbered
- Branching off from each section of spinal cord are 2 pairs of nerves
  - Afferent (incoming to CNS) branch from dorsal side
  - o Efferent (outgoing from CNS) branch from ventral side
- Branches meet and extend away from spinal cord
- After merging = spinal nerves
- 31 pairs of spinal nerves in humans

## Spinal cord: Human walk upright!

 Notice change in our walking posture affects use of anatomical language as we move from the brain to the spinal cord



**Figure 2.9** Unlike other mammals like dogs or cats, humans walk upright, giving us a "hooked" nervous system.

## Spinal cord: Sections

- Cervical
- Thoracic
- Lumbar
- Sacral



Figure 2.10 The names of the regions of the vertebral column, the bones that protect the spinal cord.

### Spinal cord: Cervical

- Anterior-most section
- 8 pairs of spinal nerves
- Innervate muscles in neck, shoulders, arms, & hands
- Afferent nerves detect somatosensory inputs from same areas
- C3-C5 innervate diaphragm injury at this level or higher can be fatal
- Widest diameter of spinal cord corresponding to many inputs and outputs to arms

# Spinal cord: Thoracic

- 12 pairs of spinal nerves
- Innervate middle trunk area, intercostal muscles between ribs, & abdominal muscles
- Some branches are responsible for changing activity of various internal organs during flight-of-flight response (autonomic nervous system)

# Spinal cord: Lumbar

- 5 pairs of spinal nerves
- Carry motor commands to hips, highs, & knees
- Afferent lumbar inputs detect sensory information from ventral sides of legs
- Swelling that increases diameter compared to thoracic or sacral areas

# Spinal cord: Sacral

- Posterior-most section
- 5 pairs of nerves
- Control flexing of toes
- Detect sensory information around genital organs & dorsal aspects of legs
- Parasympathetic nerves come from this region innervate colon, bladder, and genital organs

# Spinal cord

- More anterior injuries result in more affected body parts
- US President Franklin Delano Roosevelt likely damaged posterior spinal cord structures - lost function of legs
- Actor Christopher Reeves injured spinal cord at anterior most level of C1 – complete paralysis and lack of sensation from neck down

# Spinal cord

- Cut in transverse plane
- Results are cross-sections
- Similarities in cross-sections
  - Butterfly-shaped structure of gray matter (cell bodies)
  - Surrounded by white matter (communication pathways)
  - Ascending sensory tracts & descending motor tracts run along outer portions of spinal cord section
  - Somatosensory information arrives into spinal cord from dorsal side
  - Cell bodies of most sensory neurons are close to dorsal side = dorsal root ganglion
  - Efferent motor nerves exit spinal cord on ventral side

**Figure 2.12** Cross-section (transverse) of the spinal cord showing a few anatomical features (top). Section of spinal cord stained with LFB, which dyes myelin in blue, which is why white matter looks more blue than gray matter (bottom).



# Spinal cord

- Ratio of white to gray matter differs across sections of spinal cord
- In general, more white matter at anterior regions of spinal cord compared to poster parts
- CNS ends at spinal nerves

# Peripheral nervous system (PNS)

- Intermediary between CNS and rest of body
- Two other pairs of anatomical terms are required to discuss location and direction within the PNS:
  - 1) proximal and distal
  - 2) contralateral and ipsilateral
- Divided into 3 main branches:
  - 1) Somatic nervous system
  - 2) Autonomic nervous system
  - 3) Enteric nervous system

#### Anatomical terms

- Proximal close in proximity to CNS
- Distal more distant from CNS
- Contralateral on opposite sides
- Ipsilateral on the same side



**Figure 2.14** Anatomical language used in describing relationships from parts of the nervous system.

# PNS: Somatic nervous system

- All parts of PNS involved with outside environment (sensing or acting on it)
- AKA voluntary nervous system since it is used to cause muscle movement that is intentional

# PNS: Autonomic nervous system

- Parts of PNS that deal with internal environment (detecting internal state and influencing internal organs)
- Unconscious and without intentional control
- Has two branches (sympathetic and parasympathetic nervous systems) which are always sending signals and influencing internal organs

# PNS: Autonomic nervous system

- Sympathetic nervous system activated when we are facing real or perceived threats
  - Responsible for fight-or-flight response (increased heart rate, quickened breathing, body temperature can increase; pupil dilate, bronchioles dilate, & liver and kidneys activate a variety of enzymes)
  - Nerves branch off spinal cord at thoracic and lumbar levels (thoracolumbar)
  - Clumps of cells run alongside the spinal cord = sympathetic ganglion

- Parasympathetic nervous system
  - Response for rest-anddigest response (relaxed, satisfied, and sluggish)
  - Originates predominantly from the cervical level but some sacral areas are involved
  - Receives signals from several cranial nerves
  - Additional info: CN X, the vagus nerve, innervates many organs in midsection of body (vagus comes from same root word as vagrant wanders around body)

# Innervation of Sympathetic & Parasympathetic Nervous Systems



**Figure 2.15** Diagram showing innervation of different organs by the sympathetic and parasympathetic nervous systems and the corresponding effect. Note that the adrenal gland does not have parasympathetic activity.

# PNS: Enteric nervous system

- Dense mesh of neurons (half a billion) surrounding digestive tract (including esophagus, stomach, and intestines)
- Receives information from sympathetic and parasympathetic nervous systems, and functions without our conscious knowledge
- Not part of autonomic nervous system as these responses do not share the same reflex pathway and can work independently of vagus nerve

#### Cranial nerves

- 12 pairs
- Can control motor functions, general or specialized sensory functions, or both

| Cranial Nerve                      | Function        | Description                                                                                                                                                                                         |
|------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CN I Olfactory nerve               | Sensory         | Sense of smell                                                                                                                                                                                      |
| CN II Optic nerve                  | Sensory         | Sense of vision                                                                                                                                                                                     |
| CN III Oculomotor nerve            | Motor           | Control of extraocular muscles which allow movement of eyeballs; constriction of pupils; changing of lens shape                                                                                     |
| CN IV Trochlear nerve              | Motor           | Control of the superior oblique muscle of the eye that moves the eyeball down and lateral                                                                                                           |
| CN V Trigeminal nerve              | Sensory + motor | Tactile and pain sensory information from the face and mouth; Control of muscles used in chewing                                                                                                    |
| CN VI Abducens nerve               | Motor           | Control of the lateral rectus muscle of the eye that moves the eyeball outward laterally                                                                                                            |
| CN VII Facial nerve                | Sensory + motor | Control of the muscles that allow for facial expressions; Taste sensation on the anterior 2/3rds of the tongue                                                                                      |
| CN VIII Vestibulocochlear nerve    | Sensory         | Detection of sound information and head positional (vestibular) information                                                                                                                         |
| CN IX<br>Glossopharyngeal<br>nerve | Sensory + motor | Detection of somatic sensory in the middle ear and posterior 1/3rd of the tongue; Taste sensation on the posterior 1/3rd of the tongue; Controls the stylo-pharyngeal muscle that allows swallowing |
| CN X Vagus nerve                   | Sensory + motor | Control of the internal organs by autonomic nervous system using parasympathetic activity                                                                                                           |
| CN XI Accessory nerve              | Motor           | Control of the sternocleidomastoid and trapezius muscles of the neck and shoulders                                                                                                                  |
| CN XII Hypoglossal<br>nerve        | Motor           | Control of the muscles of the tongue                                                                                                                                                                |

Table 2.16 The twelve cranial nerves and their function.

### Questions about Cranial Nerves

What questions might we ask about the cranial nerves

# Support structures of the nervous system: Brain circulation & cerebral blood flow

- Brain has high demand for oxygen and nutrients (2% of body weight, but 15% of total cardiac output)
- Oxygenated blood moves into brain via paired vertebral arteries and internal carotid arteries
- Left and right vertebral arteries merge to form single basilar artery
- Basilar artery and internal carotid arteries form circle of Willis

For more information: <u>Circle of Willis – 3D</u> <u>Anatomy Tutorial</u>



Figure 2.17 Diagram of the circle of Willis (top) and an angiogram (bottom) showing the structure in real life.

#### Brain circulation & cerebral blood flow

- Circle of Willis has paired "exit" arteries that distribute blood to other areas of brain
- Anterior cerebral arteries = provide to dorsomedial cortical structures and deep brain structures
- Posterior cerebral arteries provide to occipital lobe
- Middle cerebral arteries branch off internal carotid artery and provide to lateral cortices

For more information: <u>Circle of Willis – 3D</u> <u>Anatomy Tutorial</u>



Figure 2.17 Diagram of the circle of Willis (top) and an angiogram (bottom) showing the structure in real life.

#### Clinical connection: Stroke

- Common & life-threatening
- Loss of blood flow
- 2nd highest cause of death in world (WHO, 2016)
- #1 risk factor = high blood pressure
- Two types: ischemic (80%) and hemorrhagic (20%)
- Hemorrhagic is less common but more deadly than ischemic
- Determine / diagnose area based on presentation of symptoms
- Treatments differ ("clotbusting" drug for ischemic)



Figure 2.18 Diagram illustrating the two main types of stroke and the effect on blood flow to the brain

# Blood brain barrier (BBB)

- Important for oxygen and nutrients to pass from blood to brain tissue
- Anatomical adaptation that selectively transports substances necessary to normal biological function while excluding potentially harmful invaders
- BBB surrounds blood vessels in brain
- Made of endothelial cells and astrocytes (a type of glial cell)
- BBB is injured in all variety of medical disorders
- Unknown what role disruption of BBB has in brain disorders
- Exclusive nature of BBB is double-edged sword (difficult to deliver drugs to brain)

# Ventricles & Cerebrospinal fluid (CSF)

- Ventricles = spaces near the medial aspect of the brain
- 4 in total
  - 2 lateral ventricles
  - o third ventricle
  - o fourth ventricle
- Ventricles are filled with cerebrospinal fluid (CSF)
- CSF is high salt water solution
- Osmolarity of CSF allows buoyancy and brain to remain "floating" in skull

**Figure 2.20** The ventricular system consists of several interconnected chambers filled with cerebrospinal fluid (CSF).



# Cerebrospinal fluid (CSF) continued

- Also found in meninges (80% of CSF exists in this space) forming cushioning
- Still, movement that is too abrupt can cause traumatic brain injury
- CSF can wash impurities out of brain
- Typical volume =  $\sim$ 150 mLs (<½ cup)
- Frequent turnover of CSF so it gets absorbed back into body regularly
  - o Each daily, body produce ~0.5 L of CSF so there are a few cycles daily
- Cellular waste materials from neurons can get dissolved & degraded outside of brain

# Clinical connection: Hydrocephalus

- 1 in 200 newborns and a small number of adults are affected
- Historically called "water on the brain"
- CSF volume increases
- Intracranial pressure is elevated
  - Fever, stiff neck, headache, seizures, altered mental status
- Children may exhibit bulging parts on skull and expansion of forehead
- Clearance of CSF may fail while production remains normal OR entrance into central canal may be narrowed or blocked
- Typical treatment: implant shunt surgically



**Figure 2.21** Hydrocephalus is one of the most common birth defects, affecting around 0.1% of births in the United States. It can also affect adults. Hydrocephalus can be deadly.

# Meninges

- Protective buffer separating soft brain from rigid bone
- Series of protective membranes
  - 1. Dura mater
  - 2. Arachnoid mater
  - 3. Pia mater
- Organic "bubble wrap" that encases a fragile nervous system

Figure 2.22 The meninges are a series of protective membranes that surround the CNS.



# Meninges Layers

#### 1. Dura mater

- Thick, fibrous material (up to 0.8 mm thick in adult)
- Attached to inside of skull with highly resilient connections found at sutures between cranial plates
- Name originates from Latin for tough mother

#### 2. Arachnoid mater

- Middle layer
- Delicate fibers that resemble spider web (where name comes from)
- Protrusions allow for CSF to drain into sinuses (CSF exists underneath this layer in the subarachnoid space)

#### 3. Pia mater

- Very fragile
- In direct contact with surface of brain, following sulci and gyri
- Name means pious mother

# Clinical connection: Meningitis

- Inflammation of the meninges
- Potentially deadly
- Exposure to infection (viruses or bacteria like *Neisseria meningitidis*) is a common cause
  - These infectious agents are highly transmissible in close contact, but vaccinations are highly effective & broad-spectrum antibiotics are effective
- Brain gets compressed from all sides (increasing intracranial pressure and resulting in same symptoms as noted in hydrocephalus)

# Meningococcal B Vaccine in Nova Scotia

- https://novascotia.ca/meningococcal-vaccines/
  - 2 vaccinations
    - Meningitis A
    - Meningitis B
  - Living in quarters
  - Clinic

# Potentially Helpful Websites

- Neurosynth.org
- BrainFacts.org